Functional prediction and physiological characterization of a novel short trans-membrane protein 1 as a subunit of mitochondrial respiratory complexes.

نویسندگان

  • Dapeng Zhang
  • Yanwei Xi
  • Maria L Coccimiglio
  • Jan A Mennigen
  • Michael G Jonz
  • Marc Ekker
  • Vance L Trudeau
چکیده

Mitochondrial respiration is mediated by a set of multisubunit assemblies of proteins that are embedded in the mitochondrial inner membranes. Respiratory complexes do not only contain central catalytic subunits essential for the bioenergetic transformation, but also many short trans-membrane subunits (sTMs) that are implicated in the proper assembly of complexes. Defects in sTMs have been discovered in some human neurodegenerative diseases. Here we identify a new subunit that we named Stmp1 and have characterized its function using both computational and experimental approaches. Stmp1 is a short trans-membrane protein, and sequence/structure analysis revealed that it shares common features like the small size, presence of a single or two TM region, and a COOH-terminal charged region, as many typical sTMs of respiratory complexes. In situ hybridization and RT-PCR assays showed that the Stmp1 expression is ubiquitous throughout zebrafish embryogenesis. In adults, Stmp1 expression was highest in the brain compared with muscle and liver. In zebrafish larvae (3-5 days postfertilization), antisense morpholino oligonucleotide-mediated knockdown of the Stmp1 gene (Stmp1-MO) resulted in a series of mild morphological defects, including abnormal shape of head and jaw and cardiac edema. Larvae injected with the Stmp1-MO had negligible responses to touch stimuli. By ventilation frequency analysis we found that Stmp1-MO-injected zebrafish displayed a severe dysfunction of ventilatory activities when exposed to hypoxic conditions, suggesting a defective mitochondrial activity induced by the loss of Stmp1. Phylogenetic profiling of known respiratory sTMs compared with Stmp1 revealed that all defined sTMs from four respiratory complexes have restricted or variable phyletic distribution, indicating that they are products of evolutionary innovations to fulfill lineage-related functional requirements for respiratory complexes. Thus, being present in animals, filasterea, choanoflagellida, amoebozoa, and plants, Stmp1 may have evolved to confer a new or complementary regulation of respiratory activities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

Long-term, high-dose aspirin therapy increases the specific activity of complex III of mitochondrial respiratory chain in the kidney of diabetic rats

Introduction: One of the main mechanisms by which diabetic complications occur is an alteration of the structure and function of proteins due to hyperglycemia. Aspirin (ASA) affects cellular pathways through different mechanisms, including glycation inhibition and antioxidant activity. The aim of the present study, as a follow up to our previous one, is to investigate the effect of long-term, h...

متن کامل

جهش جدید هموپلاسمیک T4216C میتوکندریایی در افراد ایرانی مبتلا به بیماری فردریش اتاکسیا

Introduction: The mitochondrial defects in Friedreich ataxia (FRDA) have been reported in many researches. Friedreich ataxia is an autosomal recessive neurodegenerative disorder caused by decreased expression of the Frataxin protein. Frataxin deficiency leads to excessive free radical production and dysfunction of respiratory chain complexes. Mitochondrial DNA (mtDNA) could be considered as a c...

متن کامل

Evidences for a new cation channel in the brain mitochondrial inner membrane

Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...

متن کامل

Analysis of mitochondrial subunit assembly into respiratory chain complexes using Blue Native polyacrylamide gel electrophoresis.

The mitochondrial respiratory chain consists of multi-subunit protein complexes embedded in the inner membrane. Although the majority of subunits are encoded by nuclear genes and are imported into mitochondria, 13 subunits in humans are encoded by mitochondrial DNA. The coordinated assembly of subunits encoded from two genomes is a poorly understood process, with assembly pathway defects being ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological genomics

دوره 44 23  شماره 

صفحات  -

تاریخ انتشار 2012